54 research outputs found

    Characterization of Kepler targets based on medium-resolution LAMOST spectra analyzed with ROTFIT

    Full text link
    In this work we present the results of our analysis of 16,300 medium-resolution LAMOST spectra of late-type stars in the Kepler field with the aim of determining the stellar parameters, activity level, lithium atmospheric content, and binarity. We have used a version of the code ROTFIT specifically developed for these spectra. We provide a catalog with the atmospheric parameters (Teff, log(g), and [Fe/H]), radial velocity (RV), and projected rotation velocity (vsini). For cool stars (Teff < 6500 K), we also calculated the H-alpha and LiI-6708 equivalent width, which are important indicators of chromospheric activity and evolutionary stage, respectively. We have derived the RV and atmospheric parameters for 14,300 spectra of 7443 stars. Literature data were used for a quality control of the results. The Teff and log(g) values are in good agreement with the literature. The [Fe/H] values appear to be overestimated for metal-poor stars. We propose a relation to correct the [Fe/H] values derived with ROTFIT. We were able to identify double-lined binaries, stars with variable RVs, lithium-rich giants, and emission-line objects. Based on the H-alpha flux, we found 327 active stars. We detected the LiI-6708 line and measure its equivalent width for 1657 stars, both giants and stars on the main sequence. Regarding the latter, we performed a discrete age classification based on the atmospheric lithium abundance and the upper envelopes of a few open clusters. Among the giants, we found 195 Li-rich stars, 161 of which are reported here for the first time. No relationship is found between stellar rotation and lithium abundance, which allows us to rule out merger scenarios as the predominant explanation of the enrichment of Li in our sample. The fraction of Li-rich giants, about 4%, is higher than expected.Comment: 32 pages, 34 figures; accepted for publication in Astronomy & Astrophysic

    UVSat: a concept of an ultraviolet/optical photometric satellite

    Full text link
    Time-series photometry from space in the ultraviolet can be presently done with only a few platforms, none of which is able to provide wide-field long-term high-cadence photometry. We present a concept of UVSat, a twin space telescope which will be capable to perform this kind of photometry, filling an observational niche. The satellite will host two telescopes, one for observations in the ultraviolet, the other for observations in the optical band. We also briefly show what science can be done with UVSat.Comment: 6 pages, 2 figures, accepted for publication in the Proceedings of the PAS (Proc. of the 2nd BRITE Science conference, Innsbruck

    The 2003-4 multisite photometric campaign for the Beta Cephei and eclipsing star 16 (EN) Lacertae with an Appendix on 2 Andromedae, the variable comparison star

    Get PDF
    A multisite photometric campaign for the Beta Cephei and eclipsing variable 16 Lacertae is reported. 749 h of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with ten telescopes during 185 nights. After removing the pulsation contribution, an attempt was made to solve the resulting eclipse light curve by means of the computer program EBOP. Although a unique solution was not obtained, the range of solutions could be constrained by comparing computed positions of the secondary component in the Hertzsprung-Russell diagram with evolutionary tracks. For three high-amplitude pulsation modes, the uvy and the Geneva UBG amplitude ratios are derived and compared with the theoretical ones for spherical-harmonic degrees l <= 4. The highest degree, l = 4, is shown to be incompatible with the observations. One mode is found to be radial, one is l = 1, while in the remaining case l = 2 or 3. The present multisite observations are combined with the archival photometry in order to investigate the long-term variation of the amplitudes and phases of the three high-amplitude pulsation modes. The radial mode shows a non-sinusoidal variation on a time-scale of 73 yr. The l = 1 mode is a triplet with unequal frequency spacing, giving rise to two beat-periods, 720.7 d and 29.1 yr. The amplitude and phase of the l = 2 or 3 mode vary on time-scales of 380.5 d and 43 yr. The light variation of 2 And, one of the comparison stars, is discussed in the Appendix.Comment: 18 pages, 19 figures, accepted for publication in MNRA

    Characterizing two solar-type Kepler subgiants with asteroseismology: KIC10920273 and KIC11395018

    Full text link
    Determining fundamental properties of stars through stellar modeling has improved substantially due to recent advances in asteroseismology. Thanks to the unprecedented data quality obtained by space missions, particularly CoRoT and Kepler, invaluable information is extracted from the high-precision stellar oscillation frequencies, which provide very strong constraints on possible stellar models for a given set of classical observations. In this work, we have characterized two relatively faint stars, KIC10920273 and KIC11395018, using oscillation data from Kepler photometry and atmospheric constraints from ground-based spectroscopy. Both stars have very similar atmospheric properties; however, using the individual frequencies extracted from the Kepler data, we have determined quite distinct global properties, with increased precision compared to that of earlier results. We found that both stars have left the main sequence and characterized them as follows: KIC10920273 is a one-solar-mass star (M=1.00 +/- 0.04 M_sun), but much older than our Sun (t=7.12 +/- 0.47 Gyr), while KIC11395018 is significantly more massive than the Sun (M=1.27 +/- 0.04 M_sun) with an age close to that of the Sun (t=4.57 +/- 0.23 Gyr). We confirm that the high lithium abundance reported for these stars should not be considered to represent young ages, as we precisely determined them to be evolved subgiants. We discuss the use of surface lithium abundance, rotation and activity relations as potential age diagnostics.Comment: 12 pages, 3 figures, 5 tables. Accepted by Ap
    corecore